
333333333332
Speech Bubbles
One of the most fun and easy uses of CSS3 is for layering on

visual “frosting”—non-essential visual flair and little details

that can push your design from adequate to alluring. We’ll use

some of the most straightforward and well-supported CSS3

properties to create the appearance of three-dimensional

speech bubbles that can be used to style blog comments, pull

quotes, and more.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles48

What You’ll Learn

We’ll create the appearance of speech bubbles without using any images, just these pieces of pure CSS:

�� The word-wrap property to contain overflowing text

�� The border-radius property to create rounded corners

�� HSLA to create semitransparent backgrounds

�� The linear-gradient function to create gradient backgrounds

�� The box-shadow property to create drop shadows behind objects

�� The text-shadow property to create drop shadows behind (you guessed it) text

�� The transform property to rotate objects

The Base Page
Let’s say you’re working on styling a blog’s comments section. Before
delving into any CSS3 fanciness, you’d want to get some basic styles in
place to take care of older, non-CSS3-supporting browsers. As I men-
tioned in Chapter 1, it’s important to make sure your pages are func-
tional and at least decent-looking in browsers that don’t support CSS3
before you add on CSS3 as part of progressive enhancement.

F i g u r e 2 .1 The com-
ments area before
any CSS3 is applied.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Corralling Long Text 49

Figure 2.1 shows a blog’s comments section with some basic styles
applied. The text, avatar image, commenter’s name, and date for
each comment have been laid out neatly, the text is formatted, and
we even have some basic backgrounds and borders in place. There’s
nothing wrong with this comments area; it’s usable, it’s clean, it’s
attractive. Anyone seeing it in an older browser would not think they
were missing something or that the page was “broken.”

But there’s a lot we can do with CSS3, without adding a single image
or touching the markup, to jazz up the page’s appearance. To get
started, download the exercise files for this chapter at www.stun-
ningcss3.com, and open speech-bubble_start.html in your code editor
of choice. Its CSS is contained in a style element in the head of the
page, for ease of editing.

Corralling Long Text
OK, I know I just said we were going to jazz up the comments’ appear-
ance. But before we get into the actual speech bubble styles, let’s
quickly take care of an old, frustrating text-formatting problem that
can be solved with the simplest bit of CSS3 you can imagine.

It’s not uncommon for people to include URLs in comments and
forum posts, and these URLs often overflow their containers due to
their length (Figure 2.2). If the URLs have dashes (-) in them, all the
major browsers can wrap the text of the URLs just fine. But Webkit-
based browsers and IE will not wrap at the forward-slash (/) character,
and none of the major browsers will wrap at underscores (_).

In CSS3, there’s finally an easy way to tell the browser to wrap text
within words and stop it from overflowing. All you have to do is give the
word-wrap property a value of break-word, and the browser will wrap
text within a word if it has to in order to keep it from overflowing.

N ot e : Here’s a pleas-

ant surprise: the word-

wrap property works in

IE, as far back as ver-

sion 5.5! The property

was actually created

by Microsoft and later

adopted by W3C.

F i g u r e 2 . 2 Long URLs
often overflow their con-
tainers, especially if they
contain underscores.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles50

The lowdown on the word-wrap propert y

The word-wrap property is part of the Text module found at

www.w3.org/TR/css3-text. It controls whether or not text is allowed to

break within “words.” (The separate text-wrap property controls how

lines break between words.) The word-wrap property can be set either

to normal (the default) or break-word.

Other than breaking long URLs, you might want to use word-wrap for:

�� Keeping data tables from becoming too wide and overflowing or

breaking your layout; see www.456bereastreet.com/archive/200704/

how_to_prevent_html_tables_from_becoming_too_wide

�� Wrapping displayed code snippets in pre elements; see www.

longren.org/2006/09/27/wrapping-text-inside-pre-tags

Ta b l e 2 .1   word-wrap browser support

IE Firefox Opera Safari Chrome

Yes, 5.5+ Yes, 3.5+ Yes Yes Yes

In speech-bubble_start.html, find the blockquote rule in the CSS in
the head of the page, and add the word-wrap property:

blockquote {
	 margin: 0 0 0 112px;
	 padding: 10px 15px 5px 15px;
	 border-top: 1px solid #fff;
	 background-color: #A6DADC;
	 word-wrap: break-word;
}

Save the page and check it in a very narrow browser window. Ah,
much better. The browser will still try to wrap first at normal break-
points, but if it has to, it will now wrap the text at underscores or even
within a word (Figure 2.3). Obviously, placing a break within a word
is not ideal, but I think in this case it’s preferable to the text overflow-
ing and will probably only occur on long URLs, not regular text.

Now that we’ve taken care of that little annoyance, let’s start making
these comments look like speech bubbles!

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 51

Graphic Effects Sans Graphics
You can create very graphic-looking speech bubbles without using
any actual graphics. Avoiding graphics has many benefits beyond just
being able to amaze your designer friends. You benefit by saving all
the time and effort spent creating, slicing, and optimizing graphics,
and then redoing them when your client inevitably wants to make
one small change. Your visitors benefit from the increase in page
speed that comes from having less data to download and fewer HTTP
requests to the server.

Rounding the Corners

Those sharp, rectangular-cornered comments don’t look very bubble-y,
do they? Let’s round the corners to start getting more of a speech-
bubble look.

Rounded corners are a simple, common visual effect that used to
be surprisingly hard to create in an actual web page. Creating the
rounded-corner images in a graphics program was time-consuming,
as was creating the actual HTML and CSS. You’d often have to add
a bunch of extra nested divs to place each corner image separately,
since CSS 2.1 allows only one background image per box, and the
CSS used to actually control the placement of the images could get
complicated. The images, along with the bloated markup and CSS,
bulked up the amount that each visitor had to download, slowing
down page-loading speeds. Even if you used a script to dynamically
create the rounded corners instead of manually creating and applying
images, you were still adding to the number of files that users had to
download and decreasing your pages’ performance. All this trouble
for some simple-looking little rounded corners!

F i g u r e 2 . 3 The browser
will now break text between
any two characters.

N ot e : There’s more

in-depth informa-

tion on the benefits

of reducing images in

Chapter 1, as well as a

real-world case study.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles52

Creating ovals and circles
with border-radius

If you want your speech bubbles to be complete ovals instead of

rounded rectangles, you’ll need to use elliptical-shaped corners instead

of perfectly round ones. Elliptical just means that the curve of each cor-

ner is somewhat flattened out—just like an oval. To specify an elliptical

corner, you write two measurements, separated by a slash, such as this:

border-radius: 50px/20px. (Safari 3 and 4 use the non-standard

syntax of no slash, just a space.) This means that the curve will extend

horizontally 50 pixels but vertically only 20 pixels, making a flattened,

elliptical curve. You can make each corner have different angles; find

out how at http://css-tricks.com/snippets/css/rounded-corners.

To create circles, first give your box the same width and height; use

ems as the unit of measurement instead of pixels to ensure it can grow

with its text. Then set each corner’s border-radius to one-half the

width/height value. For instance, if you have a box that is 10 ems wide

and tall, use border-radius: 5em. See http://blog.creativityden.com/

the-hidden-power-of-border-radius-2 for more examples.

In CSS3, creating rounded corners can be as simple as border-
radius: 10px on a single div. No extra markup, no images, no
JavaScript.

Of course, while CSS3 continues to be developed and gain browser
support, it’s a little more complicated in real-world usage. But it’s still
really, really easy.

In your page, modify the blockquote rule to match the following:

blockquote {
	 margin: 0 0 0 112px;
	 padding: 10px 15px 5px 15px;
	 -moz-border-radius: 20px;
	 -webkit-border-radius: 20px;
	 border-radius: 20px;
	 border-top: 1px solid #fff;
	 background-color: #A6DADC;
	 word-wrap: break-word;
}

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 53

The border-radius: 20px; declaration is the W3C standard syn-
tax for rounded corners, specifying that all four corners should be
rounded by 20 pixels. This syntax is currently supported by Opera,
Chrome, Safari 5, and IE 9. Firefox and Safari 4 and earlier use the
-moz-border-radius and -webkit-border-radius properties, respec-
tively. As explained in Chapter 1, browser vendors use these browser-
specific prefixes when the specification is still being worked out and
they think it may change. The non-prefixed version of the property
(in this case, plain border-radius) should always come last, so that
when browsers do support the non-prefixed property, it overrides the
earlier rules, which may use non-standard behavior from an older
version of the spec.

The lowdown on the border-radius propert y

The border-radius property is part of the Backgrounds and Borders module found at

www.w3.org/TR/css3-background. It’s shorthand for the properties specifying the rounding amount

of each of the four corners, in this order: border-top-left-radius, border-top-right-radius,

border-bottom-right-radius, border-bottom-left-radius. Mozilla’s properties for individual

corners have the non-standard syntax of -moz-border-radius-topleft and so forth.

You can write out all four values, with spaces in between, in one border-radius property, or just

use one value to round all four corners the same amount. Safari 4 and Safari on iOS 3 and earlier

don’t allow you to specify multiple corners in the shorthand border-radius property, other than

writing one value to specify all four at once.

See the “Creating ovals and circles with border-radius” sidebar for the syntax for elliptical curves

on corners. Also see www.owlfolio.org/htmletc/border-radius and http://muddledramblings.com/

table-of-css3-border-radius-compliance for more border-radius syntax details and examples.

Other than speech bubbles, you might want to use border-radius for:

�� Buttons; see http://blogfreakz.com/button/css3-button-tutorials and http://css-tricks.com/

examples/ButtonMaker

�� Tabs

�� Dialog boxes

�� Circular badges

�� Bar charts; seewww.marcofolio.net/css/animated_wicked_css3_3d_bar_chart.html

�� Smiley faces; see http://ryanroberts.co.uk/_dev/experiments/css-border-faces

N ot e : You don’t have

to actually declare a

border when using

border-radius. If

there is no border, the

browser just rounds

the background area.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles54

Ta b l e 2 . 2   border-radius browser support

IE Firefox Opera Safari Chrome

Yes, 9+ Yes with -moz- Yes Yes, 5+;

4+ with -webkit-

Yes

With these three lines added, the corners are now rounded in all
browsers except IE 8 and earlier (Figure 2.4). These versions of
IE simply ignore the properties and keep the corners straight—no
harm done. This is a great example of progressive enhancement, as
explained in Chapter 1. Since this is a purely decorative effect, I see no
harm in IE users missing it. If you do, read on.

Wo r k a r o u n d s fo r I E

If you really must have rounded corners in IE 8 and earlier, you can
use one of these scripts:

�� “PIE,” by Jason Johnston (http://css3pie.com), reads the border-
radius properties that are already present in your CSS and makes
them work in IE 6 and later. It also adds several other CSS3 effects
to IE.

�� “curved-corner,” by Remiz Rahnas (http://code.google.com/p/
curved-corner), also reads the border-radius properties out of
your CSS, but works only when all four corners have the same
border-radius.

N ot e : See how I

keep referring back to

Chapter 1? If you skipped

it, please go back and

read it now. There’s some

important stuff there.

F i g u r e 2 . 4 The border-
radius property applied

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 55

�� “IE-CSS3,” by Nick Fetchak (http://fetchak.com/ie-css3), is based off
of curved-corner but also adds drop shadows in IE.

�� “DD_roundies,” by Drew Diller (http://dillerdesign.com/experi-
ment/DD_roundies), lets you round corners individually, but it
doesn’t read the values from your CSS; you have to manually set
the IE values separately.

Besides these IE-specific scripts, there are a number of rounded-
corner scripts and image-based techniques out there that were
developed before the border-radius property gained support, so
you could always go back to one of these older techniques for IE.
You can choose between dozens of options at www.smileycat.com/
miaow/archives/000044.php and http://css-discuss.incutio.com/wiki/
Rounded_Corners.

If you do use a script or images for IE, make sure to hide them from
other browsers by placing the script references or IE styles within
conditional comments, or by using Modernizr, both of which are
explained in Chapter 1. That way, only IE users get the performance
hit of using an old-school rounded-corner method, and non-IE users
get the faster, pure CSS version. You’ll have to decide if the extra work
and performance hit is worth having IE users see rounded instead of
straight corners.

Adding the Bubble’s Tail

With rounded corners, each comment box now looks more like a
bubble, but a speech bubble isn’t complete without a pointer or
arrow, commonly called a “tail,” pointing to the speaker. We can add
that tail without using any graphics. In fact, we can add it without
using any CSS3—the technique only uses properties and selectors
from CSS 2.

C r e at i n g T r ia n g l e s o u t o f B o r d e r s

All we need to create a tail is a triangle, and you can create triangles
with pure CSS by using regular old borders. When two borders of a
box meet at a corner, the browser draws their meeting point at an
angle (Figure 2.5). If you reduce that box’s width and height to zero,
and give every border a thick width and a different color, you’ll end
up with the appearance of four triangles pushed together, each point-
ing in a different direction (Figure 2.6).

F i g u r e 2 . 5 By making
the top border a differ-
ent color, you can see
that borders meet at
corners at an angle.

F i g u r e 2 . 6 When a
box has no width or
height, each border
creates the appear-
ance of a triangle.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles56

Here’s what the HTML and CSS used to create Figure 2.6 look like:

<div class=”triangles”></div>

.triangles {
	 border-color: red green blue orange;
	 border-style: solid;
	 border-width: 20px;
	 width: 0;
	 height: 0;
}

What would happen if you made the top, left, and bottom borders
transparent instead of colored? Only the right border would show,
leaving the appearance of a left-pointing triangle (Figure 2.7):

<div class=”triangle-left”></div>

.triangle-left {
 	 border-color: transparent green transparent transparent;
	 border-style: solid;
	 border-width: 20px;
	 width: 0;
	 height: 0;
}

So, to sum that up, all you need to do to create a triangle using CSS
is give an element zero width and height, give it thick borders, and
make all but one of those borders transparent. You can vary the angle
of the triangle by making the widths of the borders different on dif-
ferent sides.

G e n e r at i n g t h e Tai l

Now that you know how to make an image-free triangle, let’s add a
left-pointing triangle to the left side of each comment, pointing to
the commenter’s avatar. To do this, we could nest a span or div inside
each comment, and then transform this element into our triangle,
but let’s leave the HTML pristine and use CSS-generated content to
make the element we need appear.

Generated content is a CSS 2.1 technique where you place content
into your CSS to have it appear in your HTML. It’s useful for adding
things that you don’t want to manually hard-code into the HTML, like
numbers before headings or icons after links. It shouldn’t be used
for essential content that would be missed if the user couldn’t access
the CSS file.

T i p : Remember, in CSS,

when you have four val-

ues in a single property,

like in the border-color

property shown in the

code here, the first value

is for the top, the second

for the right, the third

for the bottom, and

the fourth for the left.

Think of going around

a clock clockwise.

F i g u r e 2 .7 Making
all but one of the bor-
ders transparent cre-
ates the appearance
of a single triangle.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 57

To create generated content, you need to specify where the content is
to be inserted, using either the ::before or ::after pseudo-elements
(also written as :before and :after), and specify what content to
insert, using the content property.

What’s with the double colons?

You may have noticed that I wrote the ::before and ::after pseudo-

elements with double colons instead of the single colons you may be used

to seeing. No, it’s not a typo. CSS3 changed the syntax for pseudo-elements

to use double colons, while pseudo-classes retain the single colons.

You can continue to use the single colon versions if you wish; they still

work just fine. In fact, since IE 8 and earlier don’t support the double-

colon versions, we’ll stick with the single colon versions in this book. You

could also use both as a grouped selector, such as .caption:before,

.caption::before { content: “Figure: “;}.

For instance, to insert the word “Figure” before every image caption
on your page, you could use the following CSS:

.caption:before {
	 content: “Figure: “;
}

This CSS would turn the HTML <p class=”caption”>Isn’t my cat
cute?</p> into this text when seen on the page:

Figure: Isn't my cat cute?
In the case of the speech-bubble tail we want to generate, all we want
to see are the borders of the generated content, not the content itself.
So, let’s generate a piece of invisible content: a non-breaking space.

The HTML entity for a non-breaking space is , but you can’t use
HTML entities within the content property. Instead, you need to use
the hexadecimal part of the character’s Unicode code point (or refer-
ence). That may sound really confusing and difficult and science-y,
but don’t be scared—there are lots of handy charts online that allow
you to look up this kind of stuff.

For instance, at www.digitalmediaminute.com/reference/entity you
can see 252 little boxes, each showing one of the allowed entities in
(X)HTML. In the “Filter entities by keyword” box, type “non-breaking

T i p : Another useful

tool is the Unicode

Code Converter at

http://rishida.net/tools/

conversion, where you

can put in the charac-

ter or its HTML entity

name and convert it

into a bunch of different

formats, including its

hexadecimal code point.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles58

space.” 251 of the boxes will disappear, leaving you with one box
showing , the HTML entity name. Position your cursor over
the box (Figure 2.8). Two other codes will appear: its numerical code
(in this case,) and its Unicode code (u00A0). You just want the
hexadecimal part of the Unicode code, which is the part after the “u.”
Copy the text “00A0” onto your clipboard.

Now we’re almost there; but even though we now have the Unicode
code we need, we can’t put it straight into the content property, like so:

blockquote:after {
	 content:”00A0”;
}

If we did this, the browser would quite logically make the text “00A0”
show up, instead of the non-breaking space. To tell the browser that
we’re putting in a special character code, we need to escape the code.
If you’re a programmer, you’ll be familiar with this term, but for the
rest of us, all it means is that you have to put a backslash in front of
the code. This alerts the browser that what follows the slash is not to
be taken as literal text, but is instead a code for something else.

With the backslash, we finally have all the correct characters and
punctuation needed to insert a simple non-breaking space:

blockquote:after {
	 content:”\00A0”;
}

F i g u r e 2 . 8 Use the
XHTML Character Entity
Reference to look up the
Unicode code points
of various entities.

N ot e : Unicode code

points are often written

with a prefix of “U+”

instead of just “u.” In

either of these cases, the

part you want to include

in the content property

is just the four-digit

hexadecimal part that

comes after the prefix.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 59

Once you do this, the page will look exactly the same; the non-breaking
space is invisible, of course. Let’s add the borders around it to make it
show up. We also need to set its width and height to zero and make it
display as a block element so we can move it around to place the tail
against the side of the speech bubble:

blockquote:after {
	 content: “\00a0”;
	 display: block;
	 width: 0;
	 height: 0;
	 border-width: 10px 20px 10px 0;
	 border-style: solid;
	 border-color: transparent #000 transparent transparent;
}

If we had made all four borders the same width, we’d end up with a
rather fat triangle, like the one shown in Figure 2.7. To make the tri-
angle a little longer and thinner, we’ve set the top and bottom borders
to only 10 pixels, and the left border is nonexistent at zero pixels. The
right border—the one we use to create the appearance of a left-point-
ing triangle—is a nice, wide 20 pixels. All the borders except the right
one are transparent; here I’ve set the right border’s color to black tem-
porarily just so we can see it in order to place it correctly (Figure 2.9).

The triangle is currently placed right after the blockquote’s content—
not the right spot for a speech bubble’s tail. You can correct this by
moving it with absolute positioning. First, add position: relative;
to the blockquote rule; this establishes it as the reference point for
the absolute element’s positioning:

blockquote {
	 position: relative;
	 margin: 0 0 0 112px;
	 padding: 10px 15px 5px 15px;
	 -moz-border-radius: 20px;
	 -webkit-border-radius: 20px;
	 border-radius: 20px;
	 border-top: 1px solid #fff;
	 background-color: #A6DADC;
	 word-wrap: break-word;
}

N ot e : The :before

pseudo-element would

have worked just as

well as :after in this

case. We’re going to

be moving it from its

default position regard-

less, as you’ll soon see.

F i g u r e 2 .9 The black
right border creates
the appearance of a
left-pointing triangle.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles60

Then, add the absolute positioning to the generated content, along
with top and left values:

blockquote:after {
	 content: “\00a0”;
	 display: block;
	 position: absolute;
	 top: 20px;
	 left: -20px;
	 width: 0;
	 height: 0;
	 border-width: 10px 20px 10px 0;
	 border-style: solid;
	 border-color: transparent #000 transparent transparent;
}

You can set the top value to whatever you want; just make sure it’s
equal to or greater than the border-radius value so it lands on the
straight edge of the box, below the corner curve. The left value
should be a negative value in order to pull the triangle to the left, and
it should match the width of the triangle. In this case, the width of
the triangle is 20 pixels, because that’s the width of the right border,
so we’re using a left value of –20px. This places the triangle right up
against the left edge of the comment box (Figure 2.10).

It’s possible that a comment might be so short that the tail hangs off
the bottom, as seen in the second comment in Figure 2.10. To fix this,
add min-height: 42px; to the blockquote rule.

blockquote {
	 position: relative;
	 min-height: 42px;
	 margin: 0 0 0 112px;
	 padding: 10px 15px 5px 15px;
	 -moz-border-radius: 20px;
	 -webkit-border-radius: 20px;
	 border-radius: 20px;
	 border-top: 1px solid #fff;
	 background-color: #A6DADC;
	 word-wrap: break-word;
}

F i g u r e 2 .1 0 Absolute
positioning places
the triangle where
we want it.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 61

Now that the triangle isn’t layered over the blockquote, we can
change its color to match the blockquote:

blockquote:after {
	 content: “\00a0”;
	 display: block;
	 position: absolute;
	 top: 20px;
	 left: -20px;
	 width: 0;
	 height: 0;
	 border-1width: 10px 20px 10px 0;
	 border-style: solid;
	 border-color: transparent #A6DADC transparent
	 transparent;
}

This creates a seamless appearance between the bubble and the tail
parts of each speech bubble (Figure 2.11).

Wo r k a r o u n d s fo r I E

Our tail shows up fine in IE 8 and later versions, but IE 7 and earlier
versions don’t support generated content, so they don’t see the tail. I
think this is fine in this case, as there’s no reason users of those brows-
ers would see the plain rectangles and think, “Hey wait a second! Why
isn’t there a little triangle sticking out of each comment block?”

To add tails in IE 7 and earlier, you’d need to manually add another
element to the HTML of each comment, such as an empty span, and
turn this element into the triangle.

N ot e : The page

with all the changes

to this point is named

speech-bubble_1.html

in the exercise files

that you downloaded

for this chapter.

F i g u r e 2 .1 1 Each tail
is now colored and
placed correctly.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles62

Semitransparent Backgrounds
with RGBA or HSLA

There’s nothing more that we have to do to create the appearance
of a speech bubble—we’ve got the rounded corners and the tail—but
it would be nice to add a little more depth and visual richness with
some extra graphic details.

One great way to add depth is to make backgrounds semitransparent
(also called alpha transparency). By letting a little bit of the page back-
ground show through, you create more of a layered appearance, as if
the semitransparent element is floating over the background. I think
this look is especially well-suited to speech bubbles, because, well,
they’re bubbles—light and airy.

Before CSS3, you could create semitransparent backgrounds using an
alpha-transparent PNG as a tiling background image. Using a back-
ground image has the disadvantage of adding another hit to your
server, making pages load a little slower for your users. Performance
is impacted even more if you need to support IE 6, since it needs a
script to be able to understand alpha-transparent PNGs. Plus, you
can’t use a background image on a border, so you wouldn’t be able to
make the speech bubble’s tail semitransparent. It would look pretty
weird for the body of the bubble to be semitransparent and the tail to
be totally opaque.

CSS 3 ’ s RGB A a n d HSL A Sy n ta x

Luckily, in CSS3 we have both RGBA and HSLA to turn to. Both are
methods for specifying a color and its level of transparency at the
same time. RGBA stands for red-green-blue-alpha (for alpha trans-
parency) and HSLA stands for hue-saturation-lightness-alpha.

We could specify the shade of blue that we’re using as the speech bub-
ble’s background using any of these syntaxes:

�� Hexadecimal: #A6DADC

�� RGB: 166, 218, 220

�� RGBA: 166, 218, 220, 1

�� HSL: 182, 44%, 76%

�� HSLA: 182, 44%, 76%, 1

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 63

They all get us to the same exact color, just through different routes.
It’s a “you say toe-may-toe, I say toe-mah-toe” sort of thing.

In the RGBA syntax, the first three values are the amounts of red,
green, and blue, either from 0–255 or 0%–100%. (You’ll most often see
the 0–255 values, not the percentages.) In the HSLA syntax, the first
three values are the hue value, from 0 to 360; the percentage level of
saturation; and the percentage level of lightness. In both RGBA and
HSLA, the fourth value is the opacity level, from 0 (completely trans-
parent) to 1 (completely opaque).

You can use most graphic editors to determine the correct red,
green, and blue values needed to create your chosen color. Use the
color picker to choose a color, and in the color dialog box or picker
window, most graphic editors will tell you that color’s hexadecimal
code as well as RGB values (Figure 2.12). Finding HSL values can be a
little trickier, as not all image-editing software uses HSL; for instance,
Photoshop uses HSB (also called HSV), which is similar, but not quite
the same. If you’re on a Mac running Snow Leopard, check out the
free app Colors by Matt Patenaude (http://mattpatenaude.com),
which lets you pick colors from anywhere on your screen and can dis-
play values in HSLA as well as other syntaxes. If you’re not on a Mac, I
recommend you use one of the online HSL color picker or converter
tools (see the “Online color tools” sidebar).

N ot e : CSS3 also has

an opacity property,

but it makes the entire

element semitrans-

parent, including its

content, instead of

just the background.

F i g u r e 2 .1 2

Photoshop’s Color
Picker dialog
box shows the
equivalent RGB
values for the
chosen hex color.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles64

Online color tools

There are many free web-based color picker and converter tools that

you can find through Googling, but here are a couple that are particu-

larly handy for working with RGB and HSL values:

�� The color converter tool at http://serennu.com/colour/hsltorgb.php

allows you to convert color values you already have into hex, RGB,

and HSL syntaxes.

�� The Doughnut Color Picker at www.workwithcolor.com/doughnut-

color-picker-01.htm lets you both pick and convert colors. The picker

uses HSL, but gives the hex and RGB equivalents, and lets you input

colors in any of the three syntaxes.

Some browser-based color pickers make finding HSL or RGB values
even easier and faster. I’m a big fan of the Rainbow extension for
Firefox (https://addons.mozilla.org/en-US/firefox/addon/14328). After
you install the extension, you can tell it which syntax to use to display
color values (Figure 2.13). Then, when you use its Inspector tool to
choose colors from a web page, it gives you the option to automatically
copy those values to your clipboard (Figure 2.14), and you can then
easily paste them into your CSS. Note that, as of this writing, the exten-
sion doesn’t include the “A” part of either RGBA or HSLA, so you’ll have
to add that part in by hand. But I think you can handle all that typing.

F i g u r e 2 .1 3 In the options for the
Rainbow extension, set the “Display
color values in” option to “Hsl.”

F i g u r e 2 .1 4 Using Rainbow’s
Inspector tool, you can click
on a color to display and
copy its color code.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 65

RGB A v e r s u s HSL A

The main reason I recommend the Rainbow Firefox extension over
some other color picker extensions is that many others don't include
HSL values, while Rainbow does, and I prefer HSLA over RGBA.

I’m in the minority here. Many more people use RGBA than HSLA,
but I think that’s mainly because most people haven’t heard of HSLA.
It’s a shame, because the majority of people who use HSLA find it
more intuitive.

With RGB and RGBA values, it’s hard to tell at a glance what the color
is going to be. If you take a minute to study a whole RGB or RGBA
value, such as rgb(166,218,220), you can get a fair idea of the result-
ing color, based on which of the three component color values (red,
green, or blue) are highest. But I’m not a big fan of taking that minute
to parse it out while I’m trolling through my style sheet trying to track
down where some mysterious color is coming from. And even after
I determine that an RGB value is producing a greenish-blue hue, for
instance, it’s hard to tell how muted or dark that greenish-blue is by
looking at only its red, green, and blue values.

HSL and HSLA hue values cheat sheet

If you’re going to use HSLA, it’s helpful to memorize the hue values of a

few key colors (or at least approximately where they are between 0 and

360, so you can tweak your way to the shade you want).

�� 0 or 360 = red

�� 30 = orange

�� 60 = yellow

�� 120 = green

�� 180 = cyan

�� 240 = blue

�� 270 = purple

�� 300 = magenta

To get black in HSL and HSLA, just set the lightness value to zero per-

cent. For white, set the lightness value to 100 percent. In both cases, the

hue and saturation values can be whatever you want.

To get gray in HSL and HSLA, just set the saturation value to zero per-

cent. The lightness value will control the shade of the gray, and the hue

value is irrelevant.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles66

Another problem with RGB and RGBA is that if you want to tweak a
color—make it a little darker or brighter or greener—you have to guess
at how to change each of the values to get to the hue you want. In web
design, it’s common to use multiple shades of the same hue in differ-
ent places in the page, such as a brightened version of a color on the
current tab in a nav bar. But with RGB, different shades of the same
hue don’t necessarily have very similar color values. For instance, a
just slightly darker version of the shade of blue we’ve been working
with would have an RGB value of 155, 209, 211 instead of the original
166, 218, 220. All three numbers have to change to produce a very
slight shift in darkness.

With HSL and HSLA, you don’t have to add amounts of red, green,
and blue to get a specific hue, but instead set that hue as one specific
number. All you have to do is remember that both 0 and 360 equal
the same shade of pure red. As you increase the hue value from 0,
you simply move through the rainbow from red to purple and then
back around to red again, as if you were going around a color wheel
(Figure 2.15).

1 8 0 °

4 5 °

9 0 °

1 3 5 °2 2 5 °

270°

3 1 5 °

0 ° / 3 6 0 °F i g u r e 2 .1 5

The 360 hue values in
the HSL color syntax

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 67

The lowdown on RGBA and HSLA

RGBA and HSLA are part of the Color module found at www.w3.org/TR/css3-color. Both allow you to

set a color and its level of transparency at the same time.

In the RGBA syntax, the first three values are the amounts of red, green, and blue, either from 0–255

or 0%–100%. In the HSLA syntax, the first three values are the hue value from 0 to 360, the percent-

age level of saturation, and the percentage level of lightness. In both RGBA and HSLA, the fourth

value is the opacity level from 0 (completely transparent) to 1 (completely opaque).

Other than ghostly bubble backgrounds, you might want to use RGBA or HSLA for:

�� Drop shadows that tint the background beneath them (you’ll learn how to do this later in

this chapter)

�� Gradient highlights on buttons or any other objects (again, you’ll learn how to do this soon)

�� Tinting the chosen link in a nav bar a slightly lighter or darker shade of the main color

�� Semitransparent caption boxes laid over photos; see http://css-tricks.com/text-blocks-over-

image and www.htmldrive.net/items/show/381/Snazzy-Hover-Effects-Using-CSS3.html

�� Semitransparent dialog boxes, modal windows, or tooltips laid over content

Ta b l e 2 . 3   RGBA and HSLA browser support

IE Firefox Opera Safari Chrome

Yes, 9+ Yes Yes Yes Yes

Once you have the hue you want, you can then adjust its saturation
if you want it duller or brighter, or adjust its lightness if you want it
darker or lighter. It’s easy to get multiple shades of the same color, or
to tweak the color’s hue just a little bit in one direction. Once you’ve
worked with HSLA for a while and are more familiar with what each
hue value computes out to, it’s easier to tell at a glance what color
you’re going to get when you’re glancing through the HSLA values in
your style sheets.

The bottom line is this: RGBA and HSLA both have the same browser
support and produce the same colors. I’m using HSLA throughout
this book because it’s more intuitive to me, but if you find RGBA eas-
ier, it’s perfectly fine to use it instead.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles68

C r e at i n g S e m i t r a n s pa r e n t S p e ec h B u b b l e s

Now that we’ve gotten all that syntax out of the way, we can switch the
speech bubbles’ background color from hexadecimal to HSLA nota-
tion and make them semitransparent.

The speech bubbles’ background color is currently set to #A6DADC.
We can figure out the HSLA equivalent using the Rainbow extension.
Just open your speech-bubble page in Firefox, and use the Rainbow
Inspector to click on the speech bubble background color. It will show
you that the HSL value is hsl(182, 44%, 76%). Copy this value, go back
to your code editor, and paste it over the current hexadecimal back-
ground color:

blockquote {
	 position: relative;
	 min-height: 40px;
	 margin: 0 0 0 112px;
	 padding: 10px 15px 5px 15px;
	 -moz-border-radius: 20px;
	 -webkit-border-radius: 20px;
	 border-radius: 20px;
	 border-top: 1px solid #fff;
	 background-color: hsl(182,44%,76%);
	 word-wrap: break-word;
}

If you save and refresh the page after this change, it will look exactly
the same. You haven’t changed the color yet—just changed the syntax
for specifying it.

Now we’ll modify this new syntax to make the speech bubbles semi-
transparent. Change background-color: hsl(182,44%,76%); to
background-color: hsla(182, 44%,76%,.5); . Make sure to add the
“a” of “hsla”!

You also want to change the tail to match. Copy and paste the HSLA
value over the hexadecimal value in the border-color declaration:

blockquote:after {
	 content: “\00a0”;
	 display: block;
	 position: absolute;
	 top: 20px;
	 left: -20px;
	 width: 0;
	 height: 0;
	 border-width: 10px 20px 10px 0;

N ot e : Having spaces

after the commas

between the three HSL

values is completely

optional—it works

the same way with

or without spaces.

(I took them out.)

N ot e : I’ve written

the alpha value as

“.5,” but “0.5” is also

perfectly fine.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 69

	 border-style: solid;
	 border-color: transparent hsla(182,44%,76%,.5)
	 transparent transparent;
}

Save and refresh the page in your browser. You can now see the page
background pattern showing through the speech bubbles slightly, as
well as each commenter’s avatar showing through the little bit of the
tail that overlaps each picture (Figure 2.16).

Wo r k a r o u n d s fo r I E

You have a few options for working around the lack of HSLA/RGBA
support in IE 8 and earlier.

�� Provide a replacement solid background color (in hexadecimal,
RGB, or HSL syntax). If you declare the solid background color
before the HSLA/RGBA version, using the background shorthand
property on either both the colors or just the HSLA/RGBA one, IE
8 and earlier will use it and correctly ignore the HSLA/RGBA one.
But if you use the background-color property instead of back-
ground to declare the HSLA/RGBA color, IE 7 and 6 won’t use the
solid color; they try to apply the HSLA/RGBA color and can’t, so
they display no color at all. In some pages, where the text is still
readable even without a background color behind it, this would be
acceptable. In those cases where it’s not, and where you can’t use
the background shorthand property, you would need to feed IE 7
and earlier the solid background color in a rule that only IE can
read. See Chapter 1 for your IE-feeding options.

�� Tile a tiny semitransparent PNG image as the background image.
This has the advantage over the first option of actually making the
background semitransparent, instead of opaque. It works in IE 8
and 7, but not IE 6 and earlier, since those versions don’t support
alpha-transparent PNGs. To work around this, you could use IE’s
AlphaImageLoader filter (or one of the many IE transparency scripts

F i g u r e 2 .1 6 Each speech
bubble’s background is the
same shade of blue, but
now semitransparent.

t i p : You can use server-

side programming to

generate the PNGs for

you. See http://leaverou.

me/2009/02/bulletproof-

cross-browser-rgba-

backgrounds for a PHP

script that generates

them based on the RGBA

values in your CSS.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles70

that makes use of the filter), feed IE 6 a solid background color, or
feed IE 6 a GIF or PNG8 image. But all of this is a lot of extra work
and could have a big impact on the performance of your pages—the
AlphaImageLoader filter is horribly slow and an image is another
HTTP request. (Plus, in our case, we couldn’t use it on the speech
bubbles’ tails, since they are just borders and don’t have background
images.) I don’t recommend using a PNG background image unless
you don’t need to worry about IE 6 and thus won’t be providing any
workarounds for its lack of alpha-transparent PNG support.

�� Use IE’s Gradient filter, which works since version 5.5, and allows
semitransparent colors (using its own proprietary syntax, of
course). Just set both the starting and ending colors to the same
color so you don’t create the appearance of a gradient.

I recommend either the first or third option. The third more closely
resembles the appearance we’re going for, since the background will
be semitransparent instead of solid. However, it’s worth noting that
the Gradient filter can do strange things to the anti-aliasing of the ele-
ment’s text and make it look a little uneven (peek ahead at Figure 2.17).
You’ll have to decide if the less pretty text is worth the more pretty
background. Also, adding the filter will make the generated content tail
disappear in IE 8 (it never appeared in 7 and 6 to begin with). I can’t give
you any explanation for this—it’s just one of those weird IE bugs.

In this case, I say let’s go for the semitransparent background using the
filter. Since we don’t have rounded corners in IE to create the speech-
bubble appearance, I don’t mind losing the speech bubble’s tail.

We could add the filter right inside the blockquote rule—non-IE
browsers will just ignore it—but as discussed in Chapter 1, it’s always
nice to keep hacks and workaround separate from the standard rules.
To keep the filters separate, we should either create a separate IE
sheet, or use the conditional comments html tag trick described in
Chapter 1. Let’s use the html tag trick.

Go to the opening html tag of the page, and change it to the following
HTML:

<!--[if lt IE 7]><html lang=”en” class=”ie6”><![endif]-->
<!--[if IE 7]><html lang=”en” class=”ie7”><![endif]-->
<!--[if IE 8]><html lang=”en” class=”ie8”><![endif]-->
<!--[if IE 9]><html lang=”en” class=”ie9”><![endif]-->
<!--[if gt IE 9]><html lang=”en”><![endif]-->
<!--[if !IE]>--><html lang=”en”><!--<![endif]-->

N ot e : The PIE script

mentioned earlier can

also be used to make

RGBA work in IE, but

only in limited contexts.

See http://css3pie.

com/documentation/

supported-css3-features

for more information.

F i g u r e 2 .1 7

Before (top) and after
(bottom) the Gradient
filter is applied in IE 8.
With the filter, the
background color is
semitransparent, but
the anti-aliasing of
the text is now a little
uneven-looking.

T i p : If you don’t want

to type all this by hand (I

don’t blame you), open

speech-bubble_final.

html from this chapter’s

exercise files, and copy

and paste it from there.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Graphic Effects Sans Graphics 71

Now we can create one rule for IE 5.5, 6 and 7, and another rule for
IE 8, since its filter syntax is a little different than that used in earlier
versions of IE. Add the IE 7 and earlier rule first:

.ie6 blockquote, .ie7 blockquote {
	 background: none;
	 filter: progid:DXImageTransform.Microsoft.gradient
		 (startColorstr=#99A6DADC, endColorstr=#99A6DADC);
	 zoom: 1;
}

The Gradient filter simply declares a starting and ending color, both
the same. The color values look strange, though, don’t they? They’re
not your standard six-digit hexadecimal codes. The first two digits
are the alpha transparency value. You can use any hexadecimal value
between 00 and FF, with 00 being transparent and FF being opaque.
The last six digits are the standard hexadecimal code for a color. So,
the color #99A6DADC sets the alpha transparency to 99, the hexadeci-
mal equivalent of the .6 level of transparency we’re using in HSLA,
and the color to A6DADC, the same blue we’ve been using all along.

In addition to applying the filter, this IE 7 and earlier rule removes the
background color, which would override the filter. Also, IE 6 and ear-
lier need to have hasLayout triggered on the blockquotes to make the
filter work, which zoom: 1; accomplishes.

Converting HSLA and RGBA
to IE’s Gr adient filter

To use the exact same level of transparency in the IE filter as the HSLA

notation, you need to multiply the level of HSLA transparency value, .6 in

this case, with 255, and then convert this into hex. Robert Nyman explains

how to do this at http://robertnyman.com/2010/01/11/css-background-

transparency-without-affecting-child-elements-through-rgba-and-filters.

A much easier way to do this is to use Michael Bester’s “RGBa & HSLa CSS

Generator for Internet Explorer” at http://kimili.com/journal/rgba-hsla-

css-generator-for-internet-explorer. Put in an RGBA or HSLA value and it

will automatically convert it to the Gradient filter equivalent.

N ot e : The line breaks

in the filter value

are there just to make

it easier to read. You

can add or remove

line breaks within it

without affecting how

the code functions.

N ot e : Understanding

hasLayout is important

when working with IE. If

you need a refresher on

this strange “property,”

see Ingo Chao’s article

“On having layout” at

www.satzansatz.de/cssd/

onhavinglayout.html.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 2: S peech Bubbles72

IE 8 doesn’t need the background color removed, as it correctly
ignores the HSLA background color on the main blockquote rule. It
also doesn’t need hasLayout triggered. But, it does have a slightly dif-
ferent syntax for filter properties. Add the following rule for IE 8:

.ie8 blockquote {
	 -ms-filter: “progid:DXImageTransform.Microsoft.gradient
	 (startColorstr=#99A6DADC, endColorstr=#99A6DADC)”;
}

The differences in the filter syntax are that it’s called -ms-filter
instead of filter, and the value of the -ms-filter property is put in
quotation marks. This syntax is more in line with the CSS specifica-
tions and how other browsers designate their proprietary properties.

Image-free Gradients

We can enhance the speech bubbles’ backgrounds even further by
giving each a subtle gradient to make them appear more rounded
and three-dimensional. CSS3 allows you to create gradients with-
out images, speeding up your development time and decreasing
page-loading times, just as our image-free rounded corners can do.
CSS-generated gradients also have the advantage of being able to
scale with their containers in ways that image gradients can’t, making
them more versatile.

Unfortunately, CSS3 gradients are still very much in development at
the time of this writing; their syntax is laid out only in a W3C editor’s
draft, not a more finalized working draft or candidate recommenda-
tion. Thus, be aware that the syntax for gradients is more likely to
change than most of the CSS I’ll describe in this book. Still, I think
it’s fine to add CSS that is a little experimental if you’re using it in a
very limited manner; non-supporting browsers won’t be harmed by
its lack, and supporting browsers won’t be harmed if the syntax later
changes. The (unlikely) worst-case scenario is that the syntax will
totally change, making the gradients fail to appear in all browsers. I
think I can live with this.

You can create both linear (straight) gradients and radial (circular or
elliptical) gradients; we’re just going to focus on linear gradients here.
There is no gradient property; you specify a gradient using the linear-
gradient or radial-gradient function as the value for any property that
allows an image value, such as background-image and list-style image

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

